Quantum Mechanics and Modern Physics on the GRE Steven Anlage, Physics Dept., Univ. of Maryland x5-7321, CNAM room 1363, anlage@umd.edu

Relativity

Einstein's postulates Length contraction, time dilation, relativistic momentum formulas synchronization and simultaneity Lorentz transformations Relativistic Energy, $E^2 = (pc)^2 + (mc^2)^2$; photon has zero rest mass Cherenkov radiation (particle moving faster than speed of light in that medium)

Early "Modern Physics"

de Broglie relation λ =h/p The wave nature of matter Blackbody radiation $I = \sigma T^4$ (Stefan-Boltzmann law); $\lambda_{max}T = \text{constant}$ (Wien's displacement law) Photoelectric Effect formula, stopping potential, work function What does it demonstrate? (light has quantized energy) Compton Scattering (know the formula: $\lambda' - \lambda = (h/mc)[1 - \cos\theta]$) Bohr Model of the H-atom Energy = $-mZ^2e^4/8\epsilon_0^2h^2n^2 \sim -13.6 \text{ eV } Z^2/n^2$, Bohr radius Franck-Hertz Expt. What does it demonstrate? (quantization of atomic states) Bragg diffraction: $n\lambda = 2d\sin\theta$ (n = 1, 2, 3, ...) Davisson-Germer Expt. demonstrated wave nature of electrons

Uncertainty Principle:

 $\Delta E \Delta t > h/2, \Delta x \Delta p_x > h/2$

1D Schrod. Eq.

solutions and eigenenergies for the Harmonic oscillator potential ($E_n = {n+1/2}h\nu$), infinite square well ($E_n=n^2\pi^2\hbar^2/2ma^2$) WF normalization operators ($p = -i\hbar\partial/\partial x$), expectation values Eigenfunctions and eigenvalues Orthonormality, Kronecker delta Perturbation theory, symmetry arguments Sketching WFs for simple potentials (rules for curvature, continuity, asymptotic

forms)

Scattering in 1D, barrier tunneling, reflection and transmission from a step potential

Atomic Physics

H-Atom WF including spherical harmonics and radial solutions Quantum numbers n, l, m. Symmetry of WFs x-ray production (K, L, M, ...) ground state electronic configurations, term notation Symmetry and selection rules; s, p, d, electron WFs Angular momentum operator L, commutation relations J = L + S, Addition of angular momentum Dipole selection rules (time dependent perturbation theory) Spontaneous, stimulated emission; LASERs Periodic table, closed shells, chemical bonding Helium atom ground state wavefunction (WF) H₂ molecule Molecules: rotation, vibration, symmetry of WFs

Spin (Electron and nuclear):

What physical properties does it influence? Stern-Gerlach experiment Magnetic moment Zeeman splitting Spinors, spin eigenstates, addition of spin angular momenta Spin-orbit coupling (fine structure)

Identical Particles:

Identical Fermions obey the Pauli exclusion principle Bose-Einstein condensation Symmetric vs antisymmetric WFs Fermi energy, Fermi temperature

Radioactive Decay:

What particles are emitted? Energy and momentum conservation

Nuclear Physics

Binding energy curve radioactive decay

Particle Properties:

electron, proton, positron, neutron, muon, deuteron, alpha particle, beta particle, gamma ray, x-ray, neutrino, photon, phonon, fermion, boson, triton - Know what they are!

Conservation Laws (energy, momentum, charge, isospin, lepton number, baryon number, etc.)

Scattering Cross Section

Condensed Matter Physics

Hall Effect

Other useful skills:

Estimating numerical quantities quickly (order of magnitude estimates)

General Remarks:

Many of these problems are really very simple but are dressed up to look complicated